jump to navigation

Intel Museum December 24, 2016

Posted by flashbuzzer in History, Science.
Tags: , , , ,
trackback

I recently visited the Intel Museum in Santa Clara. This museum showcases the history of Intel.

Here are five nuggets that I gleaned from my time at the museum.

1. Robert Noyce and Gordon Moore were two of the Traitorous Eight employees who resigned from the Shockley Semiconductor Laboratory to form Fairchild Semiconductor. Each of the founders of Fairchild made an initial contribution of $500 to the company; Noyce solicited the assistance of his grandmother in that regard. Later, Noyce became so frustrated with the onerous bureaucracy of Fairchild’s parent company, Fairchild Camera and Instrument Corporation, that he and Moore resigned to form NM Electronics; later, they changed its name to Intel.

2. When Noyce and Moore founded NM Electronics, they targeted the memory market. At that time, the dominant technology was magnetic core memory – which was unreliable and expensive, as it had to be made by hand. In light of this, Noyce and Moore decided to unlock the potential of semiconductor-based memory. Their first product was the i3101 64-bit RAM. Later, they achieved great success with the introduction of the Intel 1103 which utilized metal oxide semiconductor technology.

3. In 1969, the Nippon Calculating Machine Corporation contracted Intel to design twelve custom chips for their Busicom 141-PF calculator. During the ensuing research and development phase, Intel produced a design that only required four chips. The 4004 microprocessor was a critical component of that novel approach.

4. Silicon wafers originate from a solution of liquid silicon with a purity of 99.9999999 percent. A seed crystal is dipped into that solution and then withdrawn. That seed crystal is later tapered at both ends and then sliced into a set of thin wafers. Photoresist is applied to those thin wafers as a critical step in photolithography.

5. A Front Opening Unified Pod is typically found in clean labs; it weighs about 25 pounds and contains a stack of 25 silicon wafers that are ready to be processed. A set of FOUPs is conveyed about the lab by an Automated Material Handling System, which is a network of conveyor belts that move at about 1.5 meters per second. The typical clean lab at Intel has at most 1 particle – with a size of 0.5 microns – per cubic foot of air.

The museum had several interesting exhibits that showcased Intel’s pioneering products. I also enjoyed the anecdotes that I encountered; for example, Intel requested that the city of Santa Clara change the name of Coffin Road to Bowers Avenue.

In terms of drawbacks, the accompanying text for some of the exhibits was so small that it was difficult to read. I also happened to visit the museum when several school groups were touring it – making it difficult for me to concentrate on the exhibits.

Overall I would recommend that tourists bypass this museum for the Computer History Museum – as its scope is more narrow than that of the Computer History Museum.

Advertisements

Comments»

No comments yet — be the first.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: